

EROSION MODEL AND CALIBRATION

PROPOSED WORKSHOP TOPICS (cont'd)

- 2) *Incision-and-fill history* of North and South Plateaus (not previously recognized until discovered last year at Franks Creek and Erdman Brook knickpoints), and the relevance of this history relative to model.
- 3) *Radiocarbon dating* as an alternative or supplement to optically stimulated luminescence (OSL) dating, and how dating is used in model.
- 4) *Stream capture*, and how it may be associated with groundwater processes such as sapping, and whether/how it should be modeled.
- 5) *Base-level history of Buttermilk Creek watershed*, incl. Zoar Valley gorge incision, and its relevance to the model and its calibration.
- If disagreement, try to define a process and/or studies by which disagreement can be resolved reasonably soon. If agreement, then set up a process and/or studies to improve model.

Zoar Valley, main gorge (west of North Otto Rd.)

Length about 6 - 7 miles Avg. width about 900 feet Avg. depth about 400 feet Volume about 10 billion cubic feet Typical flow about 750 cfs (0.4%) Peak flow about 30,000 cfs (15%)

Niagara gorge, escarpment to falls Length about 6 - 7 miles Avg. width about 1000 feet Avg. depth about 360 feet Volume about 10 billion cubic feet Undiverted flow about 200,000 cfs

BEDROCK VALLEY GROUNDWATER SYSTEM

RECOMMENDED STUDY

Characterization of the bedrock valley water budget and flow pathways (involve R. Yager of USGS, or use his Genesee Valley work as example?)

OCCUPATIONAL INJURIES AND FATALITIES

RECOMMENDED STUDY

Quantify occupational injuries and fatalities, based on NAICS codes, associated with long-term maintenance of erosion control structures

PROBABILISTIC RISK ASSESSMENT

Continue to study, or simply adopt, probabilistic risk assessment as the best available tool for inferring risk from complex sets of data